
Latex to InDesign

A JavaScript system to convert
Latex texts to InDesign

Revision 6

ii

Contents

Introduction  1
Scripts and videos  1
Compability  1
Features  1
InDesign pain points  2

Installing the scripts  3

Preparation  5
Set up a document  5
Figures  6
Citations and bibliography  6
Preamble  6

Styles  7

Latex to InDesign  9
Place the .tex file  9
Run the converter  9
Inspect the file  9
Clean up the document  11
Place figures and tables  11
Number captions  12
Cross-references  12
TOC items  12
Index items  13
Citations and the bibliography  13
Missed and missing items  13

Chapter and section numbers  15

Equations  17
Numbered equations  18
Some details  18
Product  20
Limit  21
Missing characters  21
Equation highlighting  22

Latex2InD  23
Installing a Latex compiler  23
Installing the Latex2InD script  23
Math fonts  24

Using the script  24
The placed equation  25
Aligning the placed equation  26
Placing an existing equation  27
Troubleshooting  28

Special characters  29
Accented characters  29
Greek characters  30
Math symbols  30
Miscellaneous symbols  30
Creating additional character-conversion scripts  31

Boxes  32
mbox  32
makebox  32
framebox  32
fbox  33
parbox  33

Figures  34
Figure composition  34
Placing figures  35
Column-spanning figures  35
Captions  35
A numbering bug  36
Short title  37
Cross-references   37

Tables  38
Table formatting  38
Floats  39
Captions  40
Cross-references  40
Footnotes  40

Arrays  41

Lists  42
Enumerate  42
Itemize  42
Description  42

Tabbing  44

Margin paragraphs  45

Quotations  46

Footnotes  47
Style parameters (footnote options)  47
Footnote styling  47
Table notes  47

Cross-references  49

Hyphenation exceptions  51

Citations and bibliography  52
The bib file  53
The bibliography style  53
Hyperlinks  53

Table of contents  54
The standard TOC  54
Additional TOC text  54
Short titles  55
Short titles in running headers  57

Comments  58

Index  59
Topic styling  59
Page ranges  60
Index references in secondary text  61
Applying page ranges  61

Script directory  62
Files run by the converter  62
Independent post-processing scripts  70

Revision history  73

1

Introduction

The aim of the scripts described in this document is to convert Latex
texts to InDesign. The extent to which the conversion is successful will
vary depending on the state of the Latex file. The conversion may at
times prove to be problematic.

Especially complex equations can be a problem. Simple to moderately
complex equations are handled fine, but complex equations can present
difficulties that the script can’t yet cope with, and Latex’s equation arrays
are not yet supported. The text offers some solutions for equations that
the converter could not or not completely handle.

In addition, there are several Latex versions and many packages that
extend the functionality of a Latex installation and it’s impossible to pro-
vide support for all of them. (The InDesign equivalent of a package is
a plug-in or a script.)

In some cases, additional commands can be incorporated without any
problem. For example, the booktabs package defines three rule com-
mands (\toprule, \midrule, and \bottomrule), which are easy to han-
dle. On the other hand, the TikZ drawing package provides an envir-
onment for creating diagrams, which the script can’t replicate. Those
diagrams should therefore be done manually in InDesign and placed
separately. (It’s possible to recreate the package and have InDesign cre-
ate the drawings, but at this stage it’s not worth the effort.)

Scripts and videos

The scripts can be downloaded using this link. That web page also has
several videos that show several parts of the scripts in action. Some of
the videos are a bit out of date because I don’t always rerecord them after
making changes to the scripts, but they still give a good impression of
how the system works – he differences aren’t substantial.

Compability

The converter deals with standard Latex as described in Leslie Lamport’s
Latex: User’s guide and reference manual and a small handful of packages,
notably the natbib package (Patrick Daly, Natural Sciences Citations and
References) and some graphics packages.

The script also deals with the compilers managed by MiKTeX – Lua
LaTex, XeLaTex, and pdfLatex.

As to InDesign, the scripts can be used from InDesign CS6.

Features

The items listed here are not fixed, they will probably change over time
as missing features are added.

What is converted

– � \newcommand (and \renew- and \providecommand and \def) state-
ments are processed.

– � Accented letters, Greek, and many math characters are processed. Not
all math symbols are included but it’s easy to add any missing charac-
ters.

– � Many equations are converted. They appear as normal text and can
be styled. The original Latex code is stored at display equations and
can be retrieved easily in case of problems. Equation arrays are not
(yet) converted. Problematic equations can be handled with a separate
script (see pp. 23–28).

– � During the conversion, tables and figures are placed as anchored
floats on the pasteboard and can be placed later.

– � Figure scaling (relative and absolute) is supported.

– � Figure and table numbering is handled by InDesign’s paragraph num-
bering.

– � Cross-references are converted to InDesign cross-references. They
update automatically.

https://creativepro.com/files/kahrel/indesign/Latex-to-InDesign.html

2

– � Various list types (itemise, enumerate, description) are processed and
numbered with InDesign’s paragraph numbering. Newtheorem items
are processed as well.

– � Instances of tabbing are converted to simple tabbed lists.

– � Footnotes are converted to InDesign footnotes. Footnote marks are
converted to footnotes because there is no InDesign equivalent.

– � Margin paragraphs are converted to custom anchored text frames and
placed in the outside margin.

– � Index entries are converted to InDesign topics and page references.
This is largely unproblematic but page ranges need some attention in
the form of a script.

– � Latex citations (\citep{...}, etc.) are converted to numbered cita-
tions or text citations if a .bib file is present.

– � Hyphenation exceptions are processed. They’re applied in the docu-
ment or added to the exception dictionary.

– � Comments are moved to anchored text frames on the pasteboard.

And what is not (yet)

Some (maybe all) of the missing items listed here will be implemented
later.

– � Not all equations are converted. They are highlighted in the text. Equa-
tion arrays are (still) ignored (on purpose), and it’s likely that there are
certain equations that the script doesn’t handle. These can be handled
using the Latex2Ind script (see pp. 23–28).

– � Only one parameter of figures is handled: sizing (both percentages
and absolute values). Other possibilities (rotation, cropping, etc.) are
not (yet) supported.

– � Over- and underlining isn’t handled.

– � The picture environment, used for line drawing, isn’t supported at all.

– � Only one bibliography format is used to generate a document’s bibli-
ography (natbib). The text explains how you can add other styles.

InDesign pain points

Two InDesign problems can make things difficult when converting
Latex files: math and character styles.

The Math problem was mentioned earlier. It comes in two guises. Most
glaringly, of course, InDesign doesn’t have an equation editor. InDesign
2024 introduced rudimentary equation support, and Adobe announced
a fully fledged editor for the near future. Whatever form that editor takes,
the equations will be in a graphic format (SVG).

Text equations – that is, equations that consist of normal text – can be
achieved only with movemen’s the MathTools plug-ins and with the cur-
rent converter. MathTools is (still!) superior to what the script can han-
dle, but at the same time the two solutions aren’t mutually exclusive. The
script will probably never be able to handle everything that MathTools
can.

The second pain point is character styles – to be precise, InDesign’s ina-
bility to handle overlapping character styles. This means that if you use
a character style to apply subscript and another style to apply bold, you
cannot apply both if you want a subscripted bold characer. Whichever
style is applied last, wins (see p. 7 for more discussion).

The upshot is that character styles are needed for individual attributes
and for each possible combination. In our example, for instance, we’d
need a character style bold-subscript in addition to the bold and the sub-
script styles.

(You’re wondering why we use character styles for bold and superscript?
Often a different typeface is needed for bold; as for superscripts, we need
subscripts to subscripts, so we can’t use InDesign’s subscript.)

Tantalizingly, when character styles are applied using GREP styles those
character styles are accumulative. But heavy use of GREP styles still slows
down InDesign considerably and should be used judiciously.

These are the two main problems. Other pain points are caused by less
problematic shortcomings (the lack of a useful end-of-range marker for
indx page references; see p. 60) and bugs (InDesign’s handing of
numbered paragraph styles in frames on the same page; see p. 36),
but they can be handled by scripts.

3

Installing the scripts

The downloaded scripts are in a zip file that you should unpack in
InDesign’s Scripts Panel folder. Do as follows.

Open the Scripts panel (Window > Utilities Scripts) and right-click the
User folder (Figure 1). This opens the folder in the operating system’s
default file manager (Explorer on Windows, Finder on MacOS).

Now extract the files in Latex-to-InDesign.zip into the Scripts Panel
folder. When you click in InDesign’s Script panel it will be updated; see
Figure 2.

When installed correctly, the panel shows one folder added to the pan-
el (Latex-to-InDesign). Expand that folder to show the scripts in the
folder. You’ll notice two additional folders, BST and Includes.

The Includes folder contains scripts that are called by the converter
(10-latex-​to-indesign.jsx). You wouldn’t normally open that folder,
the scripts in there can’t be run independently.

The BST folder contains scripts that are (aspire to be, really) the equiv-
alent of Latex’s .bst files. These are bibliography style files which are
used to format a generated bibliography. See “Citations and bibliogra-
phy” for details.

The scripts with numbered prefixes are the ones you’ll run – most of
them anyway. A short description of each follows.

010-latex-to-indesign.jsx  This is the main converter. It runs
against a Latex text file that was placed in an InDesign document.
It converts special character (which in Latex is everything that’s not
on a UK/US keyboard), figures, tables, math, footnotes, cross-refer-
ences, index markers, etc. etc.

020-number-captions.jsx  All captions are numbered in a separate
pass. Numbering is handled by InDesign’s paragraph numbering,
the script sets the numbering in the relevant paragraphs, captions,
section headings, etc.).

Figure 1.  Open the Scripts folder

Figure 2.  Installed scripts

4

021-caption-number-fix.jsx  When two (or more) figures or tables
appear on the same page, the numbering is off because of an InDe-
sign bug. This is fixed by the script.

030-cross-references.jsx  Latex’s \ref and \label commands
are placed in anchored frames on the pasteboard, to be processed
later.

040-citations-and-bibliography  Citations in the text are resolved
as either bracketed numbers or as full text references. The Latex
.bib file must be present (see “Citations and bibliography”); the pre-
amble, too, must be present with the required entries.

071-index-set-page-ranges.jsx  This script is run only immedi-
ately before generating the index. It sets page ranges at the relevant
index markers.

071-index-create-page-range-target.jsx  Latex’s page ranges
are handled by targeting a bookmark that indicates the end of the
range. InDesign can’t do that. The script creates a workaround.

Figure 3.  Figure 2.  Installed scripts (repeated)

5

Preparation

Before you run the scripts you need to set up a document and organise
the environment.

Set up a document

There’s great variety in how a document’s properties can be specified in
the Latex code – paper size, margins, type size, number of text columns,
etc. etc. For that reason the script doesn’t try to get document specifica-
tions: you’ll have to create it yourself.

If your document specifications define the text area using the four mar-
gins, you can use InDesign’s native New Document window. But if the
type specifications define the size of the text area and its location on the
page (using top and inside margin), it’s convenient to use the Page set-
up script. (This script is also a good replacement for InDesign’s New
Document window because it sets the baseline grid as well.)

For the converter there are just two important things. First, create a para-
graph style Body for the main text. Set at least the font, point size, and
leading – and first-line indent, if needed. And if the Latex file contains
figures, and if the figure width is specified relative to the text width, then,
naturally, the width of the text frame must be set correctly.

If you add hyphenation exceptions to the exception dictionary (see
“Hyphenation exceptions” on page 51), and if the document’s lan-
guage is not the same as the application’s language, then you must set
the language in the paragraph style.

Finally, if you don’t use ComputerModern for the text, create a character
style Math (at the top level, i.e. not in a style group) and set a math font
in it. Use a real math font such as Cambria Math, Fira Math, or STIX.

Do not create any other styles: the script creates all the styles on the fly,
basing all these styles on the Body style – including a Body (no indent)
style for use after headings, display material, etc. See page 7 for
details.

Figure 3.  InDesign’s page set-up
window

Figure 4.  Scripted page set-up

https://creativepro.com/files/kahrel/indesign/page_set-up.html
https://creativepro.com/files/kahrel/indesign/page_set-up.html

6

Figures

Figures should be placed in a subdirectory of the InDesign document’s
directory and this subfolder should be named Links. The converter
ignores path names in the Latex code so you can leave them there. (This
is not entirely convenient and will be changed in a future release.)

Citations and bibliography

If you want Latex-style citations (e.g. \citep{...}) to be resolved, you
need to place the .bib file in the InDesign document’s folder. In addition,
the preamble should include a natbib package reference that states how
citations should be handled, for example,

\usepackage[numbers, sort&compress]{natbib}

Finally, if a bibliography should be generated, the preamble should state
its format:

\bibliographystyle{unsrtnat}

See “Citations and bibliography” for more details on citations and the
bibliography.

Preamble

The script looks for the preamble.tex file. \newcommand, \renewcom-
mand, \providecommand, and \def defined in the preable are applied to
the text. These four can be in the document as well.

Hyphenation commands in the preamble are added to InDesign’s
hyphenation exception list. Hyphenation commands in the document
are applied only in the document. See “Hyphenation exceptions” for
details.

7

Styles

The script creates all styles on the fly: character, paragraph, object, cell,
and table styles are created as needed. All styles are based on the para-
graph style Body. This is the only style that you should add to the docu-
ment; the only properties you should add are font, point size, leading,
and first-line indent. Setting the Body style correctly is important, espe-
cially in the case of equations, which are based on that Body style, and
equations are difficult to recompose after a type change later on.

In each style panel a style group ~~Lmath is created, which is used for
styles that are used for math only.

The generated style names are named for the commands: the para-
graph style used for section headings is section; the one for subsec-
tions, subsection; etc. The created styles have little content, you should
specify them afterwards. For instance, in the chapter and the three sec-
tion styles the chapter and section numbers are defined and some space
before and after. You’ll need to set the correct font and type size and
spacing yourself. Figure 5 shows all the styles that the script creates.

Latex doesn’t have character styles (though they can mimicked by \def
and \newcommand). The script creates character styles for all character
formatting, using the command names for the style names. Thus, for \
emph items the script creates and applies a character style emph; for text
in \textbf a character style textbf is created.

Latex’s ‘character styles’ are accumulative in the sense that when you
apply bold to some text, and italic to part of that bold text, you get bold–
italic; so for bold, italic, and bold–italic you need only two styles: bold
and italic. You get bold–italic by applying both bold and italic; see
Figure 6.

Unfortunately, InDesign doesn’t work like that. When you apply bold
to some text that’s already italic, you end up with bold, not bold–italic,
so bold–italic needs a separate character style. For an example like this
it’s not such a problem. But in other cases it can get quite ridiculous.
For example, each of the various combinations of sub- and superscript
needs its own character style, as shown in Figure 7. As you can see, that

Figure 5.  Styles created by the script

Figure 6.  InDesign doesn’t have Latex’s accumulative styles

8

can lead to an explosion of character styles, but unfortunately that’s the
way things are (and will stay; accumulatove character styles is one of the
most frequently requests, but Adobe aren’t interested).

The character styles for all the super and subscripts, therefore, don’t use
InDesign’s super- and subscript formats, but set them all using vertical
movement and type scaling.

So you see that the preferred way to convert a document is to start with a
new document. Create a paragraph style Body and set its point size and
leading. Then run a conversion so that the script creates all styles. Fine-
tune the styles and remove all content and you have a template you can
use again and again. Re-place the raw Latex code and run the conversion
again.

Figure 7.  Profusion of character styles

9

Latex to InDesign

This chapter is a quick tour that runs through all aspects of the conver-
sion so that you get a feel of what is involved. Details of each operation
follow in separate sections.

Place the .tex file

Make sure you prepared everything as shown in “Preparation” on
page 5. Open the InDesign document you created and place the
Latex file. If you used the PageSetup script (see page 10) then pages
will be added automatically to flow all the text into the document. Open
the Scripts panel.

Note: Make sure that line endings are hard returns (carriage return
+ line feed). Unix and Mac files (may) use line feeds only (aka as soft
returns). After placing the file, show the hidden characters (Type > Show
Hidden Characters). Hard returns show as blue pilcrows (¶), soft returns
as blue negative signs (¬).

To change soft returns to hard returns, just replace \n with \r using the
GREP tab in the Find/Change window.

Run the converter

Run the 010-latex-to-indesign.jsx script from the Script panel.
This script does most of the conversion. If the tex file contains a lot of
figures and equations it may take some time to finish.

Tip: The script doesn’t have a progress bar, but you can get a sense of
what’s going on by opening the GREP tab of the Find/Change window.
All the regular expressions will zoom past. And to get an extra sense of
what’s going on, open all the style panels so that you can see the styles
being created in real time.

Inspect the file

When the conversion is done, inspect the file. We’ll first go through the
sample file and explain what the different colours mean and why the

Figure 8.  A .tex file placed in InDesign

10

document is in the state it is (see Figure 9), then we’ll go through the
scripts needed to finish the document.

Text condition
The script created a text condition – Math – for all math in the text (sin-
gle characters and equations); the highlight colour is yellow. This is just
to highlight all math, it has no other function and can be removed from
math that turned out well.

Cross-references
The script moved all \ref and \label commands to anchored frames
on the pasteboard (shaded light red). Cross-references are resolved by
a separate script because in book files it makes sense to resolve the
cross-references after all the book’s documents have been converted.

Figures and tables
Figures and tables are placed as anchored text frames so that they stay
close to their text references. After the script has finished you’ll need to
place the figures manually as floats.

Caption numbering is handled by InDesign’s paragraph numbering
using a dedicated style. The style is applied by a separate script because
that proved to be better.

Chapter and heading titles
Like captions, chapter titles and section headings are numbered by
InDesign’s paragraph numbering using dedicated paragraph styles.

Comments
Comments are placed as anchored text frames on the pasteboard
(Figure 10). The % sign is left so that it’s clear that it’s a comment. The
frame is shaded light blue.

Figure 9.  After running the first converter script

Figure 10.  A comment

11

Clean up the document

The sample document shows a disturbing but innocent bug in InDe-
sign’s display (see Figure 11): sometimes a text condition’s colour stretch-
es all the way down to the bottom of the screen. The same happens with
the pink colour applied by InDesign to missing characters.

Ignore the problem for the moment and check whether the math was
converted correctly. If it is, simply delete the text condition. If there are
any math problems that you want to keep highlighted, remove the text
condition from everything that’s correct; to remove a condition from
some text, select the text and apply [Unconditional].

The pink bars, too, are a display bug (their height, not their presence).
In Figure 11 there are two characters that aren’t present in the applied
font, which InDesign shows as pink boxed crosses. The problem is that
the pink marker colour is streched to the bottom of the screen, but since
you’ll fix those missing characters anyway the problem will go away.

Missing characters are probably math. The script should have caught
most of them by looking for the Math character style (in which you
specified a math font), but other characters, too, may be missing from
the text font. You can run a separate script to fix any missing glyphs
(Figure 12).

Place figures and tables

Figures are text frames that contain an inline graphic and a caption;
tables are text frames that contain a table and a caption. They are initial-
ly placed as anchored text frames. Their anchors are placed where the
Latex code was. They’re placed as anchored text frames so that they move
along with the text while you place those anchors as floats, which will
reflow the text.

When you’re ready to place the figures and tables, select the first one and
release it (so that it becomes an independent frame). To release a frame,
select it, then do Object > Anchored Object > Release.

Figure 11.  Display mess

Figure 12.  Fixing missing glyphs

Figure 13.  A figure placed as a float, sections and captions numbered

https://creativepro.com/files/kahrel/indesign/missing_glyphs.html

12

Number captions

To number all captions, run the 020-number-captions​.jsx script. For
details on captions see page 35.

If there are two or more figures and/or tables on a page, the caption
numbering will be off. This is an InDesign bug. The order of numbered
items on a page is determined only partly by their location: if all pages
contain one figure or table, the numbers are correct, but on pages with
two or more figures or tables, the numbering is wrong. The bug is that
InDesign tracks numbered paragraphs in different stories chronological-
ly, not geographically, so to speak.

So for InDesign, the paragraph’s location on the page doesn’t matter, it’s
the order of creation. The problem occurs because the converter must
work from the end of the document to the start. If the problem occurs in
your document, run the 021-caption-number-fix.jsx script to fix it.
See page 36 for details.

In section numbering you won’t see this problem because in a docu-
ment all section numbers are in a single story. In book documents the
chapter numbers are handled by the Book panel’s number updates, so
these aren’t a problem either.

Cross-references

Latex’s \ref and \label commands were placed as anchored text
frames on the pasteboard. The cross-references aren’t resolved yet, that’s
handled by the separate script 030-cross-references.jsx. The sep-
arate step is needed because you may have a book with several chapters,
and cross-references should be resolved when all document are avail-
able.

TOC items

The table of contents and lists of figures and tables should be defined
manually in table-of-contents styles, and then they’re handled correct-
ly by InDesign. Latex’s short-title feature can be handled, see page 54
for details.

13

Index items

Latex index items are converted to InDesign index topics and page refer-
ences. This is largely unproblematic, but there’s one Latex feature that
InDesign doesn’t support, namely, end-of-range markers. Most word pro-
cessors have such a feature: some marker to indicate the end of a topic’s
page range. In InDesign, the end of a range is marked by setting a num-
ber of pages or paragraphs after the topic marker, which is very awkward.

The converter emulates Latex’s behaviour by placing a mark at Latex’s
end-of-range marker. Later, immediately before you generate the index,
you should run the script 085-index-set-page-ranges.jsx to apply
the ranges in InDesign’s index. The script should also be run after any
changes that affect the document flow. See page 59 for details.

Citations and the bibliography

This script can replace \citep{...} and \citet{...} items (and their
variants \citepalt, \citetalt, etc.) with either numbered citations
([1], [2], etc.) or with full text citations (Smith 2019). This works only
in the presence of a .bib file and if the preamble is set up correctly. See
“Citations and bibliography” for details.

Missed and missing items

Not everything Latex has been implemented yet, so the converter will
have missed an assortment of Latex commands. And commands imle-
mented by many packages aren’t supported.

To finds remaining Latex look for \\\w+ in the Find/Change window,
using the GREP tab. This matches backslashes followed by letters, num-
bers, and underscores, in other words, all remaining Latex commands.

Many commands from packages can be converted by scripts, though the
extent to which this will work depends on what is actually implemented.
These range from very simple things like \toprule (introduced by the
booktabs package), which is simple, to the commands added by the TikZ
drawing package, which will be hard to handle.

14

Another thing to look out for is various special characters. It usually pret-
ty easy to write a script to handle various formats for special sorts, such
as the commands for phonetic character introduced by the TIPA package.
See “Creating additional character-conversion scripts” for how to add
these to the converter.

15

Chapter and section numbers

The script looks for the Latex items chapter, section, subsection, and
subsubsection. It creates paragraph styles on the fly for these heading
types and applies them. Paragraph numbering is set and some formatting
is applied, but undoubtedly there is some fine-tuning to be done after the
conversion.

Chapter and secion numbering is handled by setting the section levels
in the styles. The number strings depend on whether the file contains
a chapter heading. If the file needs a chapter number, you need to set it
manually (this can be done after the conversion, or you can choose to
use automatic numbering). You set the chapter number in the Number-
ing & Section Options window (right-click a page and select Numbering
& Section options from the context menu); see Figure 14.

In the Paragraph Style Options window, in the Bullet and Numbering
tab, the relevant parts are Number (the number format) and the num-
ber’s position. In the Format dropdown you select the number format
as usual. At Number you enter the number string (the number string can
contain words such as Figure or Table; see p. 35 for details).

The number itself is composed using the special characters ^H for the
chapter number, ^# for the current number, and ^n for level placehold-
ers. Other formatting characters can be inserted as usual, as in the table,
below, where ^t stands for the tab character. All these can be accessed by
clicking the small black triangle next to the Number dropdown.

With chapter title Without chapter title
chapter ^#.^t –

section ^H.^#.^t ^#.^t

subsection ^1.^#.^t ^H.^2.^#.^t

subsubsection ^1.^2.^#.^t ^H.^2.^3.^#.^t

The levels are set as well. Chapter headings are always level 1. If there is
a chapter, section headings are level 2, without a chapter heading the sec-
tion is level 1. Et cetera.

Figure 15.  Paragraph numbering

Figure 14.  Numbering and section options

16

The script also sets the left and first-line indents and the tab position to
create hanging indents. All these values should be fine-tuned.

17

Equations

InDesign doesn’t have any native equation processing as text objects,
but with a variety of scripts and styles you can get a long way. Figure 16
shows a page with equations that were converted by the script from
Latex code to InDesign.

All these equations are normal text. They’re constructed using tables
(fractions, Sum and Prod constructs in display equations) and/or
anchored text frames (sum, integral, square root). So everything in the
equation is accessible. Everything is in styles (character, paragraph, cell,
table, and object styles) which are created on the fly. They are based
on the Body paragraph style, so it’s important to set that style before
you run the script (see “Set up a document” for details). It’s possible to
change the document’s type size and reformat the equations, but that’s
always a bit of a hassle: better to get it right from the start.

There’s one type of equation that’s not yet supported, namely multi-line
display equations in Latex’s eqnarray environment.

But apart from those, inevitably there will be equations that the convert-
er can’t handle. If the equation doesn’t look too complicated you can just
try to fix it manually.

If that doesn’t work, you can try InDesign’s equation tool (available from
ID 2025). It produces a graphic that you place in your document. At the
moment of writing (March 2025) InDesign’s equation tool supports only
MathML, but rumours swirl around that Adobe are looking into sup-
porting Latex as well. There are tools on the web to convert Latex code to
MathML, that’s another possibility.

For complicated equations you have two options. The first is the Math-
Tools plug-in made by movemen, but that’s not a free solution. The plug-
in is excellent and, like the scripts described here, equations composed
by it are normal text objects. Furthermore, the plug-in is scriptable.

The other option is a solution that was designed by Jaime Gómez
Ramírez of the Universidad Autónoma de Madrid. This approach uses
an InDesign script that displays a window into which you enter the
Latex code, then when you run it, the script creates a PDF of the equa-

An eqn in a paragraph x = y + z / 2
y2 + 1

 with surrounding text

A paragraph with a fraction with an embedded fraction x + y

1 + y
x + 1

 in it.

A simple square root √x + y followed by an nth root √2.

And a square root applied to a fraction √ln n
n

.

A square root in a fraction: x = −b + √b2 − 4ac
2a

.

And another fraction. Th is one should really be a display equation to avoid

a paragraph with leading adjustment, lc(λTHz) = λTHz

nopt − nTHz
, but some people

don’t mind that. We’ll have to cater for that anyway. Paragraphs with
unequal leading generally don't look too good.

And an in-text eqn in its own paragraph. Looks like a display equation:

R(ν) = |nsample(ν) − nair

nsample(ν) + nair
|2

Display equations, the fi rst two unnumbered, the rest, numbered:
n

∑
i = 1

 xi = ∫

α(ν) = 2
d

ln{
A(ν)

A0(ν)T(ν)}

α(ν) = 2
d

ln{
A(ν)
A0(ν)

 [n(ν) + 1]2

4n(ν) }.

αmaxd = 2ln[D(ν) 4n(ν)
(n(ν) + 1)2]

Some items are sensitive to whether they are in a display equation or in an
in-text equation. Compare the sum and integral characters here with the
ones in the fi rst display equation, above: ∑i=1 xi = ∫

n

1

0

(1.1)

(1.2)

n 1
0

Figure 16.  Sample equations produced by the converter

http://movemen.com

18

tion in the background by feeding the Latex code into Latex (which you
would have installed previously). For details see LaTeX2InD. Some simi-
lar approaches exist but Jaime Gómez’s is the most recent, and the script
is provided as source code.

In order to make this possible – and because it’s always useful to have
the Latex code available for troubleshooting – the script stores the Latex
equation code at the InDesign equation. The code is stored as a script
label in a tiny graphic line (zero-width, 6 points tall) before the first char-
acter of the equation (see Figure 17). The line is labelled Latex code
on the Layers panel. In the text you see it as a blue Yen-symbol (¥) – to
make that visible, enable Normal screen code and show hidden charac-
ters (Type > Show Hidden Characters).

Numbered equations

Because of the limitations of InDesign paragraph numbering, equation
numbers are in a separate frame, which is anchored after the equation’s
last character. The frame’s anchor is again shown as a blue Yen symbol.
The frame is labelled Eqn number on the Layers panel. If the equation
code includes a label, that label is entered as a script label on the Eqn
number frame. It’s used later to resolve the document’s cross-references.

A closer look at the equation number shows a blue pipe symbol (Fig-
ure 19). It represents a zero-width space and is there because a para-
graph number shows only if the paragraph has some content. So we
must enter something, and a zero-width space makes the most sense.

Some details

As mentioned earlier, equations are constructed using tables and/or
anchored text frames. The script creates character, paragraph, cell, and
table styles on the fly. To use different parameters in the styles, run a job
to let the script create all the styles, then change the styles as necessary,
remove all the text, and use this document as a template.

Some details on equation constructs follow.

Figure 18.  A numbered equation with its (cross-ref) label shown

Figure 17.  The original Latex equation code is stored in the script
label of a graphic line labelled Latex code. The line is selected
and circled red

Figure 19.  Equation number, with
the blue pipe symbol on the right

https://github.com/gomezrj/LaTeX2InD

19

Inline equations

Some inline equations don’t fit the text very well so that it’s necessary to
change the line’s spacing (some would rightly argue that such equations
should be done as display equations). The script creates this space, but
the result doesn’t always look right, as shown in Figure 20, where the
fraction’s nominator contains a character with an ascender that clashes
with a character’s descender in the previous line.

The spacing of inline equations can be changed in two ways. To change
the space below, select the inline frame and change its bottom wrap
(Window > Text Wrap). To change the space above, select the frame’s par-
ent character and change the character’s baseline shift.

When you change the frame’s baseline shift you’ll have to adjust
the frame’s vertical offset so that, in this case, the divider line is rea-
ligned with the centre of the x-height (Right-click > Anchored Object >
Options).

This change can be scripted. In fact, the converter should check whether
clashes occur and adjust the space; this is on the to-do list.

Fractions

Fractions are done as tables placed in an anchored text frame. Fractions
inside fractions are handled as well (Figure 21). The divider rule is the
top rule of the denominator cell set to 0.5 points. The fraction’s divider
line is aligned with the centre of the line’s x-height.

Figure 21.  A fraction and the styles created for it

Figure 20.  Fix tight spacing of inline equation. Left: the frame selected; right: the frame’s
parent character selected

20

Sum

In display equations the sum symbol and its arguments are constructed
as a single-column three-row table. The table is in an inline text frame,
its appearance is determined entirely by styles (see Figure 22; again, the
panels show only the styles relevant for this construct).

Sum constructs are sensitove to their context. In in-text equations the
sum’s arguments are rendered as super- and subscripts (Figure 23).

Because the sum symbol is present in most modern OTF fonts, the script
uses the character in the current font.

Note : Ignore the blue hash symbols, they indicate the end of a story; cells
are stories in and of themselves, that’s why you see so many of them.

Product

Product constructs (\prod{...}{...}) are handled in the same way as
Sums.

Integral

Like the sum symbol, the integral symbol is present in most modern
fonts so the script simply uses the current font for it. If the font you use
lacks it, change the character style Integral and apply a font that does
contain it.

Integrals are fiddly. The sample uses Minion as the basic typeface, the
character style sets it italic and at 16 points. It also lowers the character
by 2 points. You’ll probably need to change these values if you use a dif-
ferent font at different type sizes.

The integral’s arguments are in anchored frames. Because the argu-
ments need different offsets for precise placements, each has its own
object style. The selected top argument, 1, uses Integral top box; the 0,
the argument at the foot of the integral, uses Integral bottom box.
These styles, too, probably need to be tweaked when you change the font.

Integrals, too, are sensitive to whether they are in display or inline equa-
tions.

Figure 25.  An integral’s arguments are in anchored text frames

Figure 24.  The integral’s size is set in a character style

Figure 22.  Sum

Figure 23.  In-text sum

21

Root

The argument of a root is in an inline text frame which is labelled sqrt
argument on the Layers panel. The frame uses a dedicated object style.
The root character is in a character style (Sqrt) which sets its size and
lowers it a bit. This should probably be adjusted to your choice of type-
face and point size.

The root character’s rule is a paragraph rule set in the Sqrt paragraph
style used for the argument. The rule’s offset and left indent are adjusted
to manoeuvre the rule to the correct position.

In other than square roots (n in the example in Figure 26), the n value is
in an anchored text frame. The frame’s anchor is immediately after the
root symbol. The frame is positioned by setting its vertical and horizon-
tal offsets, which should undoubtedly change when you change typeface
and/or point size.

Limit

The argument of log-like functions is placed as an anchred inline frame
(Figure 27).

Missing characters

After the conversion you’ll probably end up with various pink boxes,
which indicate characters that aren’t present in the applied font. Often
they’ll be mathematical characters.

The converter applies the Math character style to missing math charac-
ters in the specified Unicode ranges (see Figure 28). In case you see any
missing math characters you can run the apply-math-character-style-
to-missing-glyphs​.jsx script that you’ll find in InDesign’s Scripts panel.
This is in fact the include file from the Includes folder reconfigured to
run as a stand-alone script.

The script is configured to target certain Unicode ranges. If you see any
missing math or technical glyphs in the text you can change the speci-
fied ranges. Maybe uncommenting a range works (remove the two for-

Figure 26.  Roots

A inline log-like limn → ∞ x = 0 with its argu-
ment as a subscript and a display equation
with its argument below the function name:

lim x = 0
n → ∞

Figure 27.  Log-like functions adapt to their
environment

22

ward slashes at the start of the line), in other cases you might have to set
different ranges. You could also change the applied character style.

Equation highlighting

The script highlights all equations using a text condition so that after
the conversion it’s easy to find them and see whether there are any prob-
lems. To remove the highlighting from a single equation, open the Con-
ditional Text panel (Window > Type & Tables > Conditional Text), select
the equation, and apply No Condition. To remove all highlighting, sim-
ply delete the condition.

var ranges = [
	 '\\x{2100}-\\x{214F}', // Letterlike symbols
	 '\\x{2190}-\\x{21FF}', // Arrows
	 '\\x{27F0}-\\x{27FF}', // Arrows supplemental A
	 '\\x{2900}-\\x{297F}', // Arrows supplemental B
	 '\\x{1F800}-\\x{1F8FF}', // Arrows supplemental C
	 '\\x{2B00}-\\x{2BFF}', // Misc. symbols and arrows
	 '\\x{1D400}-\\x{1D7FF}', // Mathematical alphanumeric symbols
	 //'\\x{1EE00}-\\x{1EEFF}', // Arabic mathematical alphabetic symbols
	 '\\x{2200}-\\x{22FF}', // Mathematical operators
	 '\\x{2A00}-\\x{2AFF}', // Mathematical operators supplement
	 '\\x{27C0}-\\x{27EF}', // Misc. mathematical symbols A
	 '\\x{2980}-\\x{29FF}', // Misc. mathematical symbols B
	 '\\x{2300}-\\x{23FF}', // Misc. technical
	 '\\x{1D400}-\\x{1D7FF}', // Mathematical Alphanumeric Symbols
	 //'\\x{25A0}-\\x{25FF}', // Geometric shapes
	 '\\x{2100}-\\x{214F}', // Letterlike symbols
	 //'\\x{2500}-\\x{257F}', // Box drawing
	 //'\\x{2580}-\\x{259F}', // Block elements
	 //'\\x{1F780}-\\x{1F7FF}', // Geometric shapes extended
];

//More code

Figure 28.  Specify math/technical Unicode ranges

23

Latex2InD

As mentioned earlier the converter does not handle certain equations.
Some equations are (still) simply too complex for the script and some
equations use packages that I don’t know about and therefore cannot
handle by definition.

These equations can be handled using the Latex2Ind script. The idea be-
hind it is that you feed it the original Latex code, which the script then
runs in Latex behind the screens and saves as a PDF file. The script then
places that PDF file in the document. This sounds complicated, but once
the system is set up it is very easy to use. We’ll discuss setting up and
using the script in this section.

Installing a Latex compiler

Don’t be daunted: this is really quite straightforward. There are various
Latex compilers. The system recommended by the author of Latex2Ind
(Jaime Gómez Ramírez) is MikTex. You can get it from MikTex’s down-
load page. I’ve used it extensively and it works quite well.

Installation is simple: double-click the downloaded file (basic-miktex-24
.1-x64.exe) and follow the instructions. That’s all. It’s quite possible that
you’ll never see Latex, it all happens in the background. Nevertheless, in
the appendix I give some details because you may need Latex for some
troubleshooting.

Installing the Latex2InD script

The script is available at the web site of its author. I adapted it so that it
works more conveniently for our purposes – details follow. The adapted
script is part of the package that you downloaded from the CreativePro
website and you’ll find it in InDesign’s Script panel (Latex2InD-II.
jsx), but it’s still a good idea to visit the author’s web site for more back-
ground information on the script and some nice examples of publica-
tions for which the script was used.

https://miktex.org/download
https://gomezrj.github.io/projects.html

24

(Note : The script is Windows-only. Only when I was finalising this chap-
ter did I discover that there is a Mac version too. If you’re using a Mac
you’ll have to use the version from the author’s web site.)

But before going into the script it’s necessary to turn our attention to
some details of how Latex uses fonts in equations.

Math fonts

The converter (latex-to-indesign.jsx) renders equations as pure text so
that the fonts used in equations match those used in the text. Latex, how-
ever, uses ComputerModern in equations if you don’t tell it to use some-
thing else. In the original Latex2InD script you can’t specify any fonts so
you’ll always end up with ComputerModern. That was one of the main
reasons to adapt the script.

Latex2InD now handles fonts as follows. Your document almost cer-
tainly contains a character style Math because you used that to fix miss-
ing characters in the text, in which you set a math font such as Cambria
Math, Fira Math, or STIX. Latex2InD uses that font to create the equa-
tion.

That still means that the math font is used for everything in the equa-
tion. To have Latex use the document’s font for letters and digits in equa-
tions, tick Use the document’s font in the script’s window.

Using the script

Select the insertion point where the equation should be inserted and run
the script from InDesign’s Scripts panel. It shows the interface shown in
Figure 29. That’s the other main difference with the original script: the
original placed the created equation as a float, my adaptation places it as
an inline. The script gets the font to be used and its point size from the
insertion point.

You enter the Latex code in the panel on the left. You can copy the code
there or write it from scratch. It must be well-formed Latex code; enter
the code for just one equation.

Figure 29.  The script’s interface

25

At Name you privide a name for the generated PDF file. If the Latex code
contains a label, the label’s content is placed in the Name field. You can
change the name or leave it blank, in which case the script uses ‘equa-
tion’. If you use a name that already exists, the script creates a unique
name by adding the current date and time to the name.

To use the document’s font for letters and digits, check Use the docu-
ment’s fonts.

At Compiler you select which compiler should be used. The script de-
faults to XeLaTex, and I recommend that you keep this option because
this compiler has better Unicode support than the other two available
compilers.

To troubleshoot any problems you can tick any of the three Generate
checkboxes. You’ll find the Latex code that the script generated for Latex
to use, and if you know Latex, that code will tell you what the problem is.
See page 28 for details.

The generated PDF is stored in a folder equations, which is created by
the script in the document’s folder. The aux, log, and tex files are placed
there as well.

The placed equation

In-text and display equations are in effect the same for InDesign: both
are placed at an insertion point and need some manipulation to align
them relative to the insertion point’s baseline.

The script applies a few settings:

•	 Skip by Leading is disabled (it’s in the Preferences window: Edit
> Preferences, the Composition tab). If it’s enabled there will be too
much space between the bottom of the equation and the following
line.

•	 If the paragraph’s leading is fixed, the leading of the character that
holds the equation is set to Auto. If it’s kept at fixed, the top of the
equation runs into the previous line. Auto leading is applied to the
character as a local override.

•	 The script creates an object style (PDF Equation) on the fly and applies
it to the equation. The style defines the anchored frame’s type (inline)

26

and enables text wrap, though no offsets are set. If any offsets are
needed they are applied manually, which we’ll discuss below.

•	 Latex’s equation type, which produces a numbered equation, is
changed to displaymath, which is not numbered. We want to use In-
Design’s paragraph numbering so that we can use InDesign’s cross-
referencing.

•	 Latex’s eqnarray type, too, is numbered, but now we can’t remove the
number because the type must be passed on to the Latex compiler.
This means that you’ll have to crop the equation to hide the number.

Aligning the placed equation

Both in-text and display equations are placed as inlines. All display equa-
tions are generated without a number, because we want InDesign to
handle the number to ensure correct numbering and in order to be able
to handle cross-referencing to the number.

In-text equations

PDF equations, like all inlines, are placed with the bottom of the frame
at the insertion point’s baseline (Figure 30). Unfortunately, it’s not pos-
sible for a script to see where the equation’s baseline is, that is to say, the
vertical position of the x, so we’ll have to adjust manually the position of
the inline frame and its spacing. Three adjustments are necessary, and
each is set in a different panel.

First, select the equation’s parent character and open the Character pan-
el (Type > Character) to apply some negative baseline shift to move the
equation down to increase the space between the equation and the line
before it (Figure 31, top).

Second, select the frame and open the Anchored Object Options window
(Object > Anchored Object > Options). Apply a negative Y offset to move
the equation’s line (but not the equation itself) up until the x sits on the
line’s baseline (Figure 31, centre). You can move it until it looks good, or
take the exact distance between the bottom of the equation’s frame and
the x’s baseline and enter that in the Y offset’s field.

Third, with the equation’s frame still selected, open the Text Wrap panel
(Window > Text Wrap) and enter a negative value for the wrap’s bottom
offset until it looks good (Figure 31, bottom).

Figure 30.  A placed PDF

Figure 31.  Align and space an in-text PDF equation

27

Display equations

Display equations sit in a paragraph on their own. Equations of type
equation and eqnarray are numbered using the paragraph style Dis-
play equation that was created when the document was created. If the
equation contains a label, that label is handled like the labels processed
by the converter, in a separate frame (see p. 18 for details).

There is in fact very little to adjust, as you can see in Figure 32: all that’s
needed is to move the number up. As mentioned above, unfortunately a
script can’t see where the equation’s baseline is (in this case, the baseline
of x) so the number must be aligned manually, but that’s very simple.

The number sits in an anchored frame, so you can simply select the
frame and drag it up so that the bottom of the frame is aligned with the
bottom of the x. For precise placement you can place a horizontal guide
at the baseline of the x and align the number’s frame bottom with the
guide.

What if the required styles aren’t present?

It’s not likely to happen, but just in case the required styles aren’t pres-
ent, it’s easy to add them. Create a new document, add the Body para-
graph style and the Math character style, then insert a simple equation of
type equation and make sure there’s a \label{} in the code so that a
number and the label are placed.

Then run the converter, which creates the equation and the required
styles. Now select the equation’s full paragraph and go to the document
to which you want to copy the styles. Make sure there’s no selection
there and paste the clipboard content. Then press Del immediately to de-
lete the added frame. The styles remain in the document, and now you
can use Latex2Ind to create and place a PDF equation.

Placing an existing equation

To place an existing equation, select an insertion point and select the
equation from the Choose existing file dropdown. There’s no infor-
mation about the type of equation, so if you want to add a number, tick
Add number. The Name field is used for a label.

Figure 32.  A numbered and labelled display equation

28

Troubleshooting

The log file shows any errors encountered, while the generated tex file
shows how the script created the Latex code, so you can inspect it. It’s
then easier to try the code in MikTex’s code editor and runner (see 00
for details).

29

Special characters

Of the hundreds – if not thousands – of characters used in scholarly
texts, only the ones that you see on your keyboard can be entered direct-
ly into a document. So the term ‘special character’ captures anything that
isn’t under a key.

There are six script (include) files that deal with special characters. There
is no assumption that these are complete: especially the math file, which
contains a list of math characters with their Unicode values, will prob-
ably need additions. And the miscellaneous file, too, you’re likely to add
items to. We’ll show how you can add items to these files.

If characters are not present in the used font, InDesign displays them as
pink boxes. You can use this script to apply a character style to missing
characters.

These include scripts can be run separately as well. They have no
dependencies. All you need to do is uncomment the function call. For
example, to run the symbols-math.jsx script independently, open the
file in a text editor and uncomment the first line, that is, remove the two
slashes from the first line. All six character-mapping scripts can be run
like this. Their names start with symbols-.

Accented characters

Accented letters are handled by two include files. symbols-accent-1​
.jsx handles accents of the form \^{o} and {\^o} and \^o, where ̂
stands for the circumflex accent and o for the letter – so they all produce
ô. If the requested letter is not present in the Latin-1 Supplement or Latin
Extended‑A Unicode tables, the script inserts the letter followed by the
floating accent. When you use a lot of these floating accents it’s therefore
recommended that you use a font that contains all those accents, such as
the Skolar font family.

The second include file for accents is symbols-accent-2.jsx. This one
deals with accents in the form \circumflex{o}. It too inserts the char-
acter followed by the floating accent if the requested character is not in
Latin‑1 Supplement or Latin Extended‑A Unicode tables.

Figure 33.  Comment in the function call

https://creativepro.com/files/kahrel/indesign/missing_glyphs.html

30

Greek characters

Greek characters are processed by symbols-greek.jsx. The character
style emph is applied to Greek letters. The script handles isolated Greek
characters and those that have an argument (\delta{X}).

Math symbols

Mathematical symbols are processed by symbols-math.jsx. The script
contains the code for about three dozen characters, so in a math-heavy
document it’s likely that you’ll have to add characters. This is simple.

Open the script file from the Includes folder in the Scripts panel. It’s a
text file, so use a plain-text editor. Go to the equivalence table, it starts
at line 19. It doesn’t matter where in the list you add new items. Do not
type the backslash at the Latex name of the symbol.

After the colon add the character to be used in quotes. You can copy
and paste a character or you can use the character’s Unicode value,
which should be entered in the format you see in the list: '\u0000'.
For example, the approximation symbol can be given as '≈' (as in the
example) or as '\u2248'. The small squares with a question mark indi-
cate that a character can’t be displayed by the editor’s font. You can
change the editor’s font or use Unicode values.

The script handles math symbols with parameters, such as \pm{12} and
\propto{\frac{a}{b}}.

When you close the file, make sure that you save it as a text file.

Miscellaneous symbols

symbols-misc.jsx handles a variety of miscellaneous symbols –
digraphs, typographic symbols, etc.

The script consists of two parts. The first part is short: it translates
Latex’s notation for hexadecimal characters to InDesign characters.
Latex’s format for the hexadecimal value U+014B is \symbol{"014B}.

Figure 34.  Fragment of symbols.math.jsx

31

The second part is a long list of Latex code representations and charac-
ters that are fed into a simple find–replace function. The code is simple,
it speaks for itself. It’s therefore easy to add replacement items.

For example, in one of the samples I worked with I found the definitions
\og and \og{} and \fg and \fg{} (open and closing guillemot, each in
two variants, with and without braces). I added them at the bottom of the
existing list as shown in Figure 35.

As you can see, some of these replacements are very simple (e.g. replace
--- with en em-dash) while others look more complicated, using regu-
lar expressions. When you enter a regular expression, remember that
backslashes must be escaped, so that when you enter the expression as a
quoted string you should escape the escape characters, which can lead to
lots of backslashes.

An alternative to a quoted string is shown in the code fragment on the
right. /\\og(?:\{\})/.source is the same as '\\\\og(?:\\{\\})',
but is easier to read. Especially in longer recular expressions the
/.../.source format is easier.

Creating additional character-conversion scripts

You can create additional conversion scripts. In the Include folder you’ll
find a script symbols-ipa.jsx, which can be used map the TIPA pack-
age’s strings to InDesign characters. (It could be coded more efficiently,
but but at the loss of readability.)

You can use this script as a template for other character mappers.

Like other scripts in the include folder, if you comment in the first line,
the function call, you can run it as a stand-alone script.

Figure 35.  Code fragment of misc-symbols.jsx

// replaceIPA()

function replaceIPA () {
	
	 var indd = app.documents.item(0);
	
	 app.findGrepPreferences
		 = app.changeGrepPreferences
		 = app.findChangeGrepOptions = null;
	
	 var pairs = [
	 	 ['\\\\schwa', 'ə'],
	 	 ['\\\\textinvscr', 'ʁ'],
	 	 ['\\\\textturna', 'ɐ'],
	 	 ['\\\\textglotstop', 'ʔ'],
	 	 ['\\\\textrtaild', 'ɖ'],
	 	 ['\\\\textscg', 'ɢ'],
	 	 ['\\\\texthtb', 'ɓ'],
	 	 ['\\\\textctc', 'ɕ'],
	 	 ['\\\\textcrh', 'ħ'],
	 	 ['\\\\textOlyoghlig', 'ɮ'],
	 	 ['\\\\textbeta', 'β'],
]

	 for (var i = 0; i < pairs.length; i++) {
		 app.findGrepPreferences.findWhat = pairs[i][0];
		 app.changeGrepPreferences.changeTo = pairs[i][1];
		 indd.changeGrep();
	 }
}

Figure 36.  A custom character mapper

32

Boxes

mbox

There are three types of \mbox: to prevent its argument from break-
ing across the line end; to allow certain formatting in math environ-
ments; and to insert an ‘invisible’ placeholder character in eqnarrays,
for instance.

The third one is easy enough. It’s an mbox command with an empty
argument (\mbox{}), and since the invisible characters play no role in
InDesign, the script simply deletes all occurrences of \mbox{}.

The first two are handled together: The script applies noBreak to the
argument of \mbox. This means that in math environments noBreak
is applied, which strictly speaking is not necessary, but it doesn’t hurt
either, and treating these two cases the same is more efficient.

No additional styles are needed for mboxes; noBreak is applied as a local
override.

makebox

The argument of the \makebox command is placed in an inline text
frame without any stroke. An object style is created (makebox) which
uses the Body (no indent) paragraph style. The command’s arguments
– width and, optionally, alignment – are processed as expected.

framebox

Essentially \framebox command is the same as the \makebox com-
mand with a stroke added to the text frame. From InDesign’s perspec-
tive, however, things are a bit more complicated, which is why it’s han-
dled by a different script.

As for makeboxes, the script creates an object style (framebox) for the
text frame. The style handles the sizing and appearance of the box. But
for reasons I have yet to discover, the object style isn’t applied correct-

Figure 37.  makebox (without and with codes shown)

Figure 38.  framebox and fbox

33

ly so that the script has to apply some attributes individually. The script
code looks awkward but that’s the way it is.

fbox

The \fbox command is the \framebox command without arguments.
The same object style is used as for frameboxes, the script sets the text
frame’s autosize to height and width (the style is created with autosize
height only). See Figure 38.

parbox

Paragraph boxes (\parbox) are placed as inline frames. The script cre-
ates an object style for them (parbox) and a paragraph style (parbox),
based on the Body (no indent) paragraph style.

Figure 39 shows the three vertical placement options. I changed the
centre placement a bit: if the box contains an odd number of lines, the
middle line of the box is aligned with the anchor’s baseline; with an even
number of lines the centre of the box is aligned with the centre of the
anchor’s x‑height. Figure 39.  Paragraph boxes

34

Figures

In InDesign, figures are placed as floats, as in Latex. Initially, how-
ever, the converter places them on the pasteboard as custom anchored
frames so that when you move them into the text as floats, the unplaced
anchored frames travel with their reference. So while you place figures,
figures further down in the text remain opposite their preferred location,
which makes placing them much easier.

The anchors are placed at the location of the Latex figure code. In Fig-
ure 40 the dashed blue line from the figure into the text shows where
the Latex figure code was. (To make those lines visible, enable Normal
screen mode and select View > Extras > Show Text Threads.) The anchor
itself is shown as a blue Yen symbol (¥; see Figure 41; it’s partly hidden
by the paragraph mark).

Images are expected in a folder named /Links, which should be a sub-
folder of the document’s folder. If a graphic can’t be found its full path
name is placed in the figure rather than the graphic. The script ignores
path names in the Latex code to improve portability.

Of a figure’s formatting instructions, only scaling is applied, both abso-
lute (as a measurement or as the text width) and relative to the text
width. Other instructions such as clipping and rotation are not (yet) sup-
ported.

Figure composition

A figure is constructed as a text frame that contains a graphic and a cap-
tion. The script creates object styles for the container text frame and the
graphic (if it’s present). The container’s object style name is Figure, it
sets just text wrap at 18 points, which you can tweak as required.

For the image itself the script creates an object style Image, which
doesn’t set anything – just because it’s useful always to have a style
applied to something so that formatting can be applied later if necessary
but also so that you can find them easier later on.

Finally, the image sits in a paragraph for which the script creates the
paragraph style Image holder (Figure 42). This style has two settings:

Figure 40.  A figure as an anchored frame on the pasteboard

Figure 41.  An anchor in the text

Figure 42.  The content of a figure in the Story Editor

35

point size 0.1 and leading 0. Without these values the gap between the
caption and the image would be too big. That distance can be further
tweaked by adjusting the caption’s leading.

Placing figures

When the text is finalised you can go through it and place the figures
as floats. To place a figure, release it so that it becomes an independent
frame, then place it at its desired position. (If figures aren’t released their
text wrap won’t work if they are placed before their anchor.) To release
an anchored frame, right-click it, select Anchored Object in the con-
text menu, and select Release (or go through the Object menu: Object >
Anchored Object > Release). If the document contains many figures it’s
useful to set a keyboard shortcut to make life easier. In Figure 43 you can
see that I applied Ctrl+Alt+Shift+R to the Release command.

Column-spanning figures

The column-spanning figures I have seen in Latex files were two mini-
page environments in a figure environment. The converter places them
as two separate figures and groups them.

Captions

The script creates a paragraph style for the captions on the fly (Figure
caption). Unlike in Latex, InDesign tables and figures need their own
paragraph styles because they need their own numbering lists.

Captions aren’t numbered during the conversion. Instead, after the con-
version run the 020-number-captions.jsx script. It sets InDesign’s para-
graph numbering on the caption style.

If the document contains a chapter heading, its number is used in the
Number string, as shown in Figure 44: ^H stands for the chapter num-
ber, ^# for the sequential number; the numbering level is set to 2. As
you can see, all punctuation is part of the caption’s number format (^>
stands for an en-space). It must be because unfortunately numbering is
a paragraph attribute, not a character attribute.

Figure 44.  The caption style’s settings

Figure 43.  Releasing an anchored object

36

If there is no chapter title in the document, the number string is set to
^#:^>, and the level to 1.

(To set the chapter number, open the Pages panel’s fly-out (click the
hamburger icon) or right-click the document’s first page in the Pages
panel, select Numbering & Section Options and set the chapter num-
ber in the Start Chapter Number At field.)

A numbering bug

The automatic numbering of the captions works fine, but there is a
problem when two figures are placed on the same page: the figure num-
bers are the wrong way around, with the bottom figure’s number higher
than the top figure’s number. This is an InDesign bug. It can be worked
around with the script 021-caption-number-fix.jsx.

The bug is pretty dumb. When numbered paragraphs are on separate
pages, they’re numbered correctly, InDesign follows the order of the
pages. But when there are two or more numbered paragraphs (in sep-
arate frames, of course) then InDesign numbers them chronologically,
that is, in the order in which they were created. Since the converter (for
script-technical reasons) has to create the figures (and their captions)
from the end of the document to the start, and two figures appear on the
same page, the bottom figure was created before the top figure and its
number will be lower than the top figure, not higher. This problem will
occur also when you insert a figure later.

The only way to fix this that I’m aware of is to set each caption’s start
number. That way the captions are still numbered automatically (that’s
what InDesign thinks, anyway) and cross-references continue to work.
This is what the script mentione above, 021-caption-number-fix.
jsx, does. I have used that script extensively while preparing this manu-
al!

To set a start number manually, place the cursor in the paragraph whose
number you want to set, open the Paragraph panel, click the hamburg-
er menu in the panel’s the top–right, and select Bullets and Numbering.
In that window select Start At from the Restart Numbers dropdown, and
enter the start number in the field to the right of the dropdown.

Figure 45.  Setting a paragraph number

Figure 46.  GREP style to hide short titles in captions

37

Short title

Captions can contain a short title for use in the table of contents. In
Latex such a short title is placed in brackets at the start of the caption:

\caption[Band diagram]{Semiconductor band diagram
showing creation of an electron-hole pair by photo-
generation}

The converter leaves the short title in place and adds a character style
(Short title) so that it is hidden in the caption. You can see it in the
Story editor (Edit > Edit in Story Editor).

The character style is applied as a GREP style; it hides the text by set-
ting it to 0.1 points, 1 per cent horizontal scale, superscript, and, for good
measure, it applies the paper’s colour.

The Short title style is applied as a GREP style because a ‘normal’,
non-nested style causes problems in the table of contents.

Cross-references

Labels (cross-reference targets) and references (cross-reference sources)
are placed in anchored text frames on the pasteboard. In Figure 47 you
see the reference’s frame pointing to where the reference will be insert-
ed (later, with a separate script). The label in the caption, too, is anchored.
You don’t see the dashed line because the caption’s story isn’t selected,
but you can see the anchor (the blue Yen-symbol) at the end of the cap-
tion.

Cross-references are resolved with a separate script because in a book
job all chapters should be converted before you can set the cross-refer-
ences; see page 49 for details.

Figure 47.  Cross-reference labels and references are in anchored frames

38

Tables

There are two types of table: in-text and floating. An in-text table sits in a
paragraph that is part of the text stream and moves with the text like all
other text. A floating table sits in a separate text frame, is almost always
placed at the top or the bottom of the page, and stays there even when
the text reflows.

In Latex an in-text table is defined in a \tabular environment. It is usu-
ally not numbered, and often doesn’t have any rules. It’s sometimes
called ‘text table’.

A floating table in Latex is simply a tabular environment embedded in
a \table environment. Floating tables usually have a (numbered) cap-
tion.

Essentially it works the same in InDesign. An in-text table sits in a para-
graph in the main text, probably using a dedicated paragraph style that
(among other things) centres the table horizontally. To create a float, the
paragraph containing the table is embedded in a text frame together
with the caption. That frame is placed somewhere on a page.

(Note that floating tables and figures are similar: a separate text frame
with a caption and an image or a table. And the way that they’re placed
and use cross-references, too, is similar.)

Table formatting

The script converts Latex \tabular environments to InDesign tables.
A table style is created on the fly and cell styles for the body rows and
one each for the first and the last row. Paragraph styles are created for
the cells in the top row, the body rows, and the bottom row.

Most formatting instructions in a Latex table are carried over to the
InDesign table. Various types of rule are supported (\hline, \cline,
\toprule, \midrule, \bottomrule). Top and tail rules are set to 0.5
points, internal rules to 0.25 points. This can be changed in the styles
after the document has run, or in the inline-tables.jsx script. (It will be
made configurable in some next version of the script.)

Figure 49.  A formatted table

Kinetic data for the wild–type, and mutated strains of
ECAO measured in the fi rst set of THz–TDS exper-
iments. Data used with thanks to Dr. M. A. Smith,
University of Leeds.
ECAO strain kcat (s–1) KM (μM) kcat/KM (μM–1s–1)
WT 15 1.2 12.5
E573Q 0.003 1.1 0.0027
I342F 4.1 1.6 2.6
I342F+E573Q 0.48 13.5 0.036

\begin{table}
	 \caption{...}
	 \begin{tabular}
	 ...
	 \end{tabular}
\end{table}

\begin{tabular}
...
\end{tabular}

Figure 48.  Latex code for an inline (left) and a floating
table (right)

39

The alignment of columns is applied as defined in the table, and over-
rides are applied as well. @-expressions, when they insert some text, are
applied, otherwise they are ignored, so tables that contain @-expressions
usually need some post-processing to adjust column widths and/or cell
insets, but content-wise everythig is carried over to InDesign.

Columns are snapped to their contents except when a column width is
set in the Latex code (using the p{...} parameter).

InDesign’s table formatting is a mix of settings applied to the table and
to the text. For example, horizontal alignment in cells (and columns) is
set as a paragraph attribute applied to the text. Vertical alignment in a
cell is an attribute of the cell. And to centre a table horizontally, centring
is applied to the paragraph that holds the text: horizontal alignment is
not a table attribute.

Figure 50 shows an example of a table with various format instructions.
The example is from Lamport’s book (Latex: A document preparation sys-
tem, p. 204). On the left is the Latex code, on the right, the script’s out-
put. Vertical rules weren’t applied. And in the ‘low’ and ‘high’ columns
the insets should be changed to bring the prices together so that they
appear properly ranged. This is very fiddly and may be added to the
script later.

Floats

Like figures, floating tables are placed as custom anchored text frames
on the pasteboard. The anchors are placed at the location of the Latex
table code. A table is created in a text frame together with its caption, and
if there’s a cross-reference label it’s processed as usual.

The script creates an object style for the table container on the fly. Its
name is Table and can be tweaked if necessary, for example, to change
the space between the table and the caption. The table itself is created as
described above.

The table’s container frame is set to the width of the text. Figure 51.  A floating table initially placed on the pasteboard as an anchored frame (the
heavy vertical line is the page edge)

\begin{tabular}{|r||r@{--}lp{1.25in}|}
\hline
\multicolumn{4}{|c|}{GG\&A Hoofed stock}
 \\ \hline\hline
&\multicolumn{2}{c|}{Price}& \\ \cline{2-3}
\multicolumn{1}{|c||}{Year}
& \multicolumn{1}{r@{\,\vline\,}}{low}
& high & \multicolumn{1}{c|}{Comments}
 \\ \hline
1971 & 97 & 245 & Bad year \\ \hline
 72 & 245 & 245 & Light trading due to a

heavy winter \\ \hline
 73 & 245 & 2001 & No gnus was very good

gnus this year \\ \hline
\end{tabular}

GG&A Hoofed stock
Price

Year low high Comments
1971 97– 245 Bad year.

72 245– 245 Light trading due to
a heavy winter.

73 245– 2001 No gnus was very
good gnus this year.

Figure 50.  One of L. Lamport’s example tables. Original Latex code on the left, script out-
put on the right (vertical rules not applied). Column insets to be set manually to bring
together the figures in the ‘low’ and ‘high’ columns

40

Captions

Tables captions are handled in exactly the same way as figure captions.
So are short-title items. See pages 35–36 for details.

Cross-references

Labels and cross-references are treated as described for figures.

Footnotes

Table notes are placed immediately after the table because the table is
in a separate text frame, in other words, in its own story. Unfortunately,
InDesign allows just one numbering scheme per document, so the table
notes will be numbered with Arabic numbers. You will probably want
to change that to roman numbers, for which you can use a script, table
footnotes. See also the section on footnotes, page 47.

https://creativepro.com/files/kahrel/indesign/table_footnotes.html
https://creativepro.com/files/kahrel/indesign/table_footnotes.html

41

Arrays

An array is basically a table without rules. The difference between arrays
and tables is substantial in Latex (it has to do with math mode versus
text mode and the differences that follow from that), but for InDesign
the difference doesn’t matter.

42

Lists

The three list-making environments enumerate, itemize, and
description are produced as expected.

Enumerate

A paragraph style (enumerate) and an InDesign list definition (enumer-
ate) are created on the fly. The paragraph style is based on the Body (no
indent) style. The paragraph’s left and first-line indent are set together
with a tab stop to create hanging indents.

The numbering mode is set to ‘Continue from previous number’ in
the style; the script restarts numbering every list by setting the first list
item’s start number to 1.

The paragraph style’s space before and after are set to 6 points; change
that as necessary. The list’s internal spacing is zero by setting ‘Space
between paragraphs using the same style’ to 0.

Itemize

Itemized lists are formatted as bulleted lists. The script uses the standard
bullet character, which can be changed in the paragraph style.

Other paragraph attributes (spacing, hanging indents) are the same as
those of the enumerate style.

Description

The script creates a paragraph style (description) and a character style
for the labels (description label), which applies bold. The character
style is applied as a nested style in the paragraph style. The blue back-
slash in Figure 53 following the labels is InDesign’s end-nested-style-
here code, which sets the scope of the nested character style.

The space after the label is an em-space (the blue horizontal bar with
thee dot below it), which is hard-coded in the script. It’s possible to
implement a style-driven space, but that’s pretty convoluted and since

Figure 52.  Paragraph style for numbered lists (enumerate)

Figure 53.  Description

43

the space is almost always either an en- or en am-space, if it should be
an en-space it’s an easy find-and-replace action. (If I ever get round to
using a configuration file, the space after the description label will be
part of it.)

44

Tabbing

Latex’s tabbing environment is rendered as a sequence of tabbed para-
graphs. A paragraph style is created (tabbing) which sets 6 points space
before and below the tabbed list.

The commands \pushtabs, \poptabs, and \kill are supported. \+ and
\- are not (yet).

45

Margin paragraphs

Margin paragraphs (\marginpar{...}) are placed in anchored text
frames. The script creates an object style for the frame (Margin note)
and a paragraph style (Margin note) for the content. The width of the
frame is set to 72 points. To change this, change the object style.

The frame is centred vertically relative to its anchor. To show the anchor,
enable Normal screen mode (View > Screen Mode > Normal) and ena-
ble the display of text threads (View > Extras > Show Text Threads). The
anchor is shown as a blue Yen-symbol; a blue dashed line connects the
anchor and the text frame. To change the vertical alignment relative to
the anchor, change the object style.

Figure 54.  Margin paragraphs

46

Quotations

For each type of quotation – \quote and \quotation – a paragraph
style is created on the fly. They are based on Body (no indent). In both
styles space before and after is set to 6 points, internal paragraph spac-
ing is zero.

47

Footnotes

InDesign’s footnotes are considerably less flexible than Latex footnotes.
In InDesign you can set the start number only at the level of the docu-
ment. You can have only one numbering style per document. Number-
ing restarts can be set only at the level of the spread, section, or page.
And, finally, footnote numbering restarts at every story. For this reason
any parameters in a footnote command are ignored.

Style parameters (footnote options)

Style parameters (separation rule, space between footnotes and text, etc.)
are ignored, you set all these in the Layout tab of the Footnote Options
window (Type > Document Footnote Options > Layout).

Some style parameters can be set at the page, but because the InDesign
document is bound to flow differently from the generated Latex docu-
ment there’s no point in adding these Latex parameters as local over-
rides in InDesign.

Footnote styling

The script creates a paragraph style for the footnotes (Footnote), based
on the Body style, and a character style for footnote references (Foot-
note reference).

The separator (that is, the footnote number and text separator – ^t for
Tab by default) can’t be styled directly in this window. The simple solu-
tion is to create a nested style or a GREP style in the footnote paragraph
style.

Table notes

Tragically, Adobe decided to do table notes the way MS Word does them.
If a table is in the text flow (an in-text table), then its notes are part of
the main text’s footnote stream. Table notes are numbered as part of the
main text’s notes, and they appear at the foot of the page rather than
below the table.

Figure 55.  Footnote options

Figure 56.  More footnote options

48

Because footnotes are a property of the story, this isn’t a problem. The
script converts tables as floats, which form their own story, and therefore
they are placed below the table and their numbering starts at 1.

However, footnote numbering style can be set only at the level of the
document, so table notes are numbered Arabic, just like the notes in the
main text. To change this a separate script is needed, see table footnotes.

Footnotemarks

InDesign doesn’t have the equivalent of Latex’s \footnotemark and
\footnote​text commands so they are converted to footnotes. In the
InDesign document they’ll form part of the document’s footnote stream.

Cross-references

In InDesign it’s not possible to create cross-references to footnotes. The
\label and \ref markers stay in place unchanged so you can replace
them with hard numbers.

If live cross-references are a must you can use DTP Tools’s plug-in. The
plug-in is fully scriptable and works well. An additional interesting fea-
ture provided by DTP Tools is its ability to disable cross-reference updat-
ing.

https://creativepro.com/files/kahrel/indesign/table_footnotes.html
https://dtptools.com/

49

Cross-references

The converter moves Latex’s references and labels (in InDesign-speak
that’s cross-reference sources and destinations) to anchored text frames
on the pasteboard (Figure 57). The dashed rules indicate where the ori-
ginal \ref and \label codes were in the text (if you don’t see those
lines, enable Normal screen mode (View > Screen Mode > Normal) and
enable the display of text threads (View > Extras > Show Text Threads).

In book jobs you’d resolve the cross-references only after all chapters
have been converted. Open the book file and run the script 030-cross-
​references.jsx from InDesign’s Scripts panel.

The result is shown and discussed on the following page.

Figure 57.  Cross-references are placed as anchored text frames

50

The created cross-references are displayed in the Cross-References pan-
el (see Figure 58). The names are those of the targets. In this panel those
names indicate the cross-reference types: (1.2) is an equation; 1.1.1
is a section number; the rest, of course, are the sources of figures and
tables.

The numbers on the right-hand side of the panel are page numbers of
the sources, the dots represent the targets (green dots for valid cross-ref-
erences; PB stands for ‘pasteboard’; invalid/out-of-date cross-references
are indicated by yellow triangles). Both the numbers and the dots can be
clicked to jump to their locations in the document.

The anchored frames with references and labels always start out shad-
ed light red. The cross-reference script removes the shading from the
frames whose content could be resolved. In Figure 58 you can see that
the reference to Figure 1.1 was resolved (second line in section 1.1).

The sample file shown in the figure is part of a book and I ran the script
without the book file or any other documents open. The cross-reference
frames that remain red are those that could not be resolved: their refer-
ences are in a different file.

The frames can be removed because after fixing the cross-references
they don’t serve any purpose – though they could stay there since they
won’t appear in exported PDFs or in print.

Footnotes

In InDesign it’s not possible to create cross-references to footnotes. If
you really need them you can use DTP Tools.

Figure 58.  Resolved cross-references

51

Hyphenation exceptions

Latex hyphenation exceptions are coded as \hyphenation{...} in the
preamble or in the document file. The command’s argument is one or
more words with possible break points indicated by dashes.

Hyphenation exceptions can be handled in two ways in InDesign. You
can add them to the exception dictionary or you can add discretionary
hyphens in the document. I always add common exceptions in the dic-
tionary and rare, idiosyncratic, words in the document itself because I
don’t want to add lots of very unusual words to the dictionary.

Latex, on the other hand, doesn’t offer that choice and always adds pos-
sible word breaks in the document.

The script lets you choose where exceptions should be applied: in the
dictionary or in the document. It adds exceptions from the preamble in
the dictionary, and the exceptions found in the document are marked up
in the document by adding discretionary hyphens.

To use the option to add words to the exception dictionary, make sure
that the correct language is applied in the Body paragraph style. The
script needs the language name so that it adds the exceptions to the cor-
rect dictionary.

To set the paragraph style’s language, edit the style and go to the
Advanced Character Formats tab and select the language from the Lan-
guage dropdown.

\hyphenation{ac-tiv-ity}
\hyphenation{abil-ity abil-ities}

Figure 59.  Hyphenation commands in the preamble

Figure 60.  Setting the document’s language

52

Citations and bibliography

Citations in the text aren’t processed by the converter, they’re handled by
a separate script (citations-and-bibliography.jsx) that should be
run after the converter.

The script doesn’t handle Latex’s standard citation command
(\cite{...}). Instead it supports the citation format of the natbib
package as described in the documentation of the natbib package (Pat-
rick Daly, Natural Sciences Citations and References). This package has
been part of the standard Latex installations for many years and is the
de facto standard.

For text citations, the package has two commands, \citep{...} and
\citet{...}, for parenthetical and text cirations, respectively: (Jones
2025) and Jones (2025). Daly states that Latex’s \cite{...} command
behaves like \citet for author–year citations but like \citep for
numerical ones. The use of \cite is therefore discouraged. If your text
contains \cite commands, simply change them to either of the natbib
versions.

Of the commands described by Daly, the following are supported:
\citet, \citep, \citealt, \citelalp, \citenum, and \citetext. The
remaining commands may be supported in a future release of the script.

Of the package parameters, the following three are supported: num-
ber, sort, and sort​&​compress. The script tries to read the parameters
from \usepackage command, which should be in the preamble, which
should be in the open InDesign document’s folder. The command
should be in the standard Latex format, e.g.

\usepackage[numbers, sort&compress]{natbib}

If there’s any problem processing the preamble (file not found, usepack-
age not found, etc.), the script defaults to numbers == false.

The sort parameter is defined only for the number format (i.e. the cita-
tions have bracketed numbers instead of years and entries in the bib-
liography are preceded by corresponding bracketed numbers). When
the number parameter is not present and sort or sort&compress is,

%fixed

@article{
abobakr
title=Brilliant, Coherent Far-Infrared (THz) Synchrotron Ra-
diation
author=M. Abo-Bakr \emph{et al.}
journal=Physical Review Letters
volume=90
number=9
pages=094801
numpages=4
year=2003
publisher=American Physical Society
}

@article{
Adam
author=A. J. L. Adam and P. C. M. Planken and S. Meloni and
J. Dik
journal=Optics Express
number=5
pages=3407–3416
publisher=OSA
title=Terahertz imaging of hidden paint layers on canvas
volume=17
year=2009
}

@article{
alben
author=Alben, J. O. and Caughey, W. S.
title=Infrared study of bound carbon monoxide in the human
red blood cell, isolated hemoglobin and heme carbonyls
journal=Biochemistry
volume=7
number=1
pages=175–183
year=1968
}

Figure 61.  A .bib file

https://ctan.fisiquimicamente.com/macros/latex/contrib/natbib/natbib.pdf

53

then the script lists multiple citations chronologically, as in (Smith 2010,
Jones 2012), irrespective of the order in which they appear in the \citet
command.

The bib file

Naturally, the citations can be processed, and the bibliography generated,
only if the .bib file – the bibliography database – is present. This is the
only file that the script can work with to process citations and the bibli-
ography.

The bibliography style

The script supports just one bibliography style, unsrtnat, but this can
be used for numerical and author–year mode. If the \usepackage com-
mand includes the numbers parameter, the bibliography is organised
chronologically (that is, in order of text occurrence) with bracketed num-
bers preceding the entries. If the numbers parameter is absent, the bib-
liography is created APA style, without bracketed numbers and sorted
alphabetically.

The unsrtnat style is the only one supported by the script, it’s defined
in unsrtnat​.jsx, which is the equivalent of Latex a .bst file. It lives in
the BST subdirectory. This directory also contains two other style scripts
(plainnat​.jsx and abbrvnat​.jsx), but they are the same as unsrtnat.jsx. You
can use unsrtnat.jsx as an example to define other styles.

Hyperlinks

References (both numeric and full text) can be linked to the bibliography
using a hyperlink. This hasn’t been implemented yet. A better solution
is in fact pop-up references: roll over a reference with the mouse and a
pop-up note with the full reference appears at the foot of the page.

Figure 62.  The BST folder

54

Table of contents

The table of contents and lists of figures and/or tables are handled by
InDesign in the usual way. However, Latex has two features that InDe-
sign lacks, but which can be implemented in InDesign: short titles and
additional text for the TOC that doesn’t occur in the body of the text. In
what follows we’ll first outline the standard TOC, then we’ll outline how
these two Latex features can be handled.

The standard TOC

The converter creates styles f0r the various headings it finds in the text
(part, chapter, section, subsection, and subsubsection) and things like
table and figure captions. You find these styles in the Paragraph Styles
panel.

To generate a table of contents, create a table-of-contents style as usu-
al. For each item that should appear in the TOC, create a new paragraph
style – for example, create a section toc paragraph style along the sec-
tion style used in the text. Set up the TOC style as shown in Figure 63. In
a book, don’t forget to check the Include Book Documents checkbox.

Additional TOC text

This is one of the two features that InDesign lacks. It’s sometimes use-
ful to include a heading in the TOC that makes sense only in the TOC and
therefore doesn’t appear in the main body of the text. The Latex com-
mand for including such a heading is \addcontentsline:

\addcontentsline{toc}{section}{English}

The command has three parameters. The first one determines in which
TOC the text should be included: the main contents (toc), the list of fig-
ures (lof), or the list of tables (lot). The second parameter determines
the appearance of the additional text. In the case of the above example
the additional text is formatted as a section entry. The third parameter is
the text to be inserted in the table of contents.

Figure 63.  A TOC style

55

In the text these addcontentsline items are hidden but you can see
them in the story editor. Only the text of the entry remains (here, Eng-
lish). The converter created a paragraph style whose name is construct-
ed from the first and the second parameters of the command: section
(dummy TOC) toc. The text is hidden in the usual way by applying 0.1
point size, 0 leading, and 1 per cent horizontal and vertical scale.

Note: Because point size can’t be less than 0.1 points these add
contentsline paragraphs add 0.1 point vertical space.This would be
a problem only if the next line of text should be on the grid and if you
align text to the baseline grid. If this situation occurs the remedy is to
reduce the next line’s leading by 0.1 point. If you don’t align the text to
the baseline grid then don’t bother.

Short titles

The second Latex feature that can be replicated in InDesign is the short-
ened heading or caption. The length of a running header should gener-
ally not be longer than about two-thirds of the width of the text area, so
long headings should be shortened to fit. Tables and especially figures
often have long captions, and these should be shortened in the table of
contents. Short titles are given as a parameter of the heading or caption
command:

\caption[Short title]{Long title}

Long title appears in the text, Short title is used in the TOC and in running
headers. Adding this functionality isn’t entirely straightforward but can
be done. We’ll start with the table of contents.

Figure 64.  Additional table-of-contents text

56

Short titles in the table of contents

The converter deals with short TOC titles as follows. A character style
Short title is created and applied to the short title so that it’s hidden
(0.1 point type size, 1% horizontal scale).

Take the caption in Figure 66. A caption like this will end up in the con-
verted document as shown in Figure 65. The story editor (Edit > Edit in
Story Editor) shows the short title (it’s in brackets), while the short title
isn’t visible in the document’s window. Select anything in the short title
and you’ll see that the character style Short title was applied by the
GREP style (circled red).

When you generate the table of contents the full caption will be includ-
ed, that is, the short title and the display caption (Figure 67).

All that’s then left to do is to delete the long title and the brackets that
wrap the short title. Alternatively, set two GREP styles in the TOC style that
hide the first bracket and everything from the closing bracket to the tab
or right-indent. You can use the same Short title character style, see
Figure 68.

(The second GREP expression is \[.+?\K\].+?(?=[\t~y]) – in case
you want to use it you can copy it from here.)

Figure 65.  A caption with a short title; Latex code

\caption[Photocurrent and resulting THz electric field]Illustration of (a) the
transient photocurrent in the photoconductive emitter and (b) the resulting THz
electric field transient}

Figure 66.  A caption with a short title in the document and the
story editor

Figure 67.  Caption with short title in the list of figures
Figure 68.  Hiding the long title in the table of contents

57

Short titles in running headers

Short titles in chapter and section headings are used in running headers
as well. You can set these up using InDesign’s text variables in the usu-
al way.

However, there may be a catch here. InDesign doesn’t include any chap-
ter or paragraph numbers in the running headers, which is generally
correct in my experience, but sometimes the paragraph numbers must
be included.

Another ‘feature’ of InDesign’s running head text variables is that inter-
nal formatting isn’t honoured, so if you use italics, for instance, in a sec-
tion heading, the italics won’t appear in the running header.

For these reasons the most appropriate approach is to use a script that
places the running headers on rectos as text rather than using a variable.
This is a general InDesign issue, for a more detailed description and
scripts, check these two links:

running-headers.html
text-variables-in-running-headers.html

https://creativepro.com/files/kahrel/indesign/running-headers.html
https://creativepro.com/files/kahrel/indesign/text-variables-in-running-headers.html

58

Comments

Comments – text between a single unescaped percentage symbol and a
return character – are placed as anchored text frames. The percentage
symbol is kept; the frame is light blue.

Consecutive comments are placed together in a single frame. It’s pos-
sible that a big comment frame masks a smaller one.

The script creates an object style for the frame (Comment) and a para-
graph style (Comment) for the content. The width of the frame is set to
64 mm. All this can be changed in the styles.

The frame is placed where the comment used to be in the text. To show
the frame’s anchor, enable Normal screen mode (View > Screen Mode
> Normal) and enable the display of text threads (View > Extras > Show
Text Threads). The anchor is shown as a blue Yen-symbol, a blue dashed
line connects the anchor and the text frame.

To delete a comment, select it and press Del or backspace. To delete all
comments you can look for the object style using the Find Object tab in
the Find/Change window.

Figure 69.  A comment

59

Index

InDesign’s index feature is notoriously under-specified, but with some
additional scripting the flexibility of Latex index markers can be success-
fully converted, and InDesign’s index becomes quite powerful. Areas
of concern are the styling of topic names, page ranges, and contextual
awareness such as index markers in footnotes.

Topic styling

InDesign topic names can’t be styled directly, you need an approach
which is in fact much like Latex’s. In Latex a topic name can include a
text tag to indicate some character style, while the separate sort-order
field can be set to ignore those tags and ensure that the topic is sorted
correctly. For instance, in this Latex index item:

\index{alps@\textbf{alps}}

the topic is \textbf{alps}, and is preceded by the sort-order string
(alps; the @-symbol separates the sort order and the topic name). This
Latex index marker is converted to the InDesign page reference seen in
Figure 70.

The topic will appear in the generated index as \textbf{alps}. A sep-
arate script is needed to remove the textual tag and apply the character
style textbf.

There is a scriptless alternative using a nested GREP style, which involves
hiding the textual tags while at the same time applying the character
style.

To hide any text in InDesign, create a character style that sets the
type size to 0.1 points and horizontal scale to 1 per cent. That’s usually
enough, but for good measure you could also apply superscript and page
colour Paper. You would then use that character style in a nested GREP
style as shown in Figure 71. The character style textbf is applied to
text wrapped in braces, the character style hide to everything up to and
including the opening brace and to the paragraph-final closing brace.

Figure 70.  A page reference

Figure 71.  Defining a GREP style

60

The second approach is more convenient in that it’s a set–up-and-forget
feature, but it does involve some overhead and it probably doesn’t do
much for accessibility.

Page ranges

InDesign offers several ways to set up page ranges, most of which are
useful, but it lacks the single most useful page-range approach, namely,
an end-of-range marker as used by virtually all word processors and type-
setters. But it’s not too hard to script those markers.

In a Latex marker such as \index{restivity|(}, the opening paren-
thesis (indicates that it is the start of a range. The converter places a
standard InDesign page reference there. Its type is set to For Next No of
Pages and its range is set to 1 page. Later this type is used by the script
that applies the page ranges by the time the index is generated.

The end marker, \index{restivity|)}, is placed as a graphic line, its
name is set to Range target: followed by the topic name (the name
is shown in the Layers panel). The graphic line has no width and is 6
points tall. The script applies an object style (Range target, created on
the fly) to the line so that it (and all other end-of-range markers) can be
made visible, which makes them easier to manage. Simply change the
object style’s stroke weight to 1 point and apply some colour. (This can
cause some reflow of the text but when you change the style’s stroke
weight back to 0 points the text will flow back.)

If the topic is a subtopic the marker’s name is constructed from the par-
ent topic and the topic separated by ##. For example, the end-of-range
marker of the topic whiskey, Islay is labelled Range target:whiskey​##​
Islay; see Figure 73.

Before you generate the index you need to run a separate script which
sets the correct page count at the start-of-range markers. When the index
needs to be regenerated you’ll have to run the script again to re-set the
page ranges.

Figure 72.  An end-of-range marker

Figure 73.  An end-of-range marker for a subtopic

61

Index references in secondary text

InDesign’s index markers aren’t aware of their context. It’s therefore
not possible to indicate that an index reference is in a footnote, a table,
or anywhere else. This can be achieved by some scripts but they’re not
included here, they’re not trivial.

Applying page ranges

By the time you’re ready to generate the index, you’ll first need to run
the script that actualises the page ranges in the Index panel. The script is
070-index-set-page-ranges.jsx.

62

Script directory

The converter, Latex-to-InDesign.jsx, is a script that calls a number of
include files. All these include files are in the Include folder which was
created when you installed the scripts. Most of them can be run inde-
pendently when you uncomment the function’s call in the include file.
Thus, the include file figures.jsx starts with these two lines:

//~ placeFigures()
function placeFigures () {

To run this file as an independent script, uncomment the first line and
run the script from the ESTK or VSCode or save it (using a different
name) and run it from the Scripts panel.

Apart from the include files called by the converter there are several
scripts that should be run after the conversion of a Latex file. All these
files are listed here together with a short explanation of what they do.

The order in which the include files are called in Latex-to-InDesign​
.jsx should not be changed.

Files run by the converter

first-things-first​.jsx
– � If the document in which you’re placing the Latex file doesn’t contain

the paragraph style Body, the script creates it. The Body style is used
as the basis for all other styles that are created by the script. The style
is set to use Minion Pro at 10.5/13 points.

– � All spurious white space (leading, trailing, sequences) is deleted.

– � Various commands are removed that have no meaning for InDe-
sign or that make no sense until you lay out the document (\sloppy,
\newpage, etc.).

– � The notation for math environments is normalised. There are various
ways to code equations in Latex. The converter normalises them so
that the math converter has less to do.

63

In-text formulas can be coded as $...$, \(...\), and \begin
{math}...​\end{math}. The script replaces the latter two with the
first.

Unnumbered display equations can be marked up by \[...\],
$$...$$, or \begin{displaymath}​...​\end{displaymath}. The
script changes the first two formats to the last one.

Numbered display equations can be wrapped in just one code, so they
don’t need any normalisation.

– � The text is cleaned up (remove leading and trailing spaces, etc.)

newcommand.jsx
The script looks for \newcommand, \renewcommand, \providecommand.
and \def. It first looks in the active document, then it looks for a file
preamble​.tex in the active document’s directory. These commands are
executed (‘applied to the text’).

fix-paragraphs.jsx
Paragraph breaks are indicated by double line breaks. Single paragraph
breaks have no layout meaning in Latex, they can be used to make the
source text more readable. The script therefore needs to delete single
line breaks, though not of course those in environments such as tables,
figures, lists, and math.

The script therefore marks up all the line breaks that should remain
with a text condition. Then all line breaks that are unconditional – that is,
those that are not in a text condition – are deleted.

tables.jsx
Table environments are converted to InDesign tables. They are placed as
anchored floats on the pasteboard so that until you place them in the text
they stay at their callouts.

Rules set in the Latex code are ignored, all tables are formatted with
0.75 pt top and tail rules and a 0.5 pt rule below the header. The script
creates object, paragraph, cell, and table styles as well as a caption style.

If the caption command contains an item for the list of tables in the
frontmatter, object and paragraph styles are created for it, too.

64

figures.jsx
Figures are placed as anchored floats on the pasteboard so that until
you place them in the text they stay at their callouts. The figure file to be
placed must be in a subdirectory Images in the active document’s folder.
If the graphic can’t be found the figure is still placed (with caption, label,
etc.) and graphic’s name is placed in the figure. The script creates object
and paragraph styles as well as a caption style.

If the figure’s caption command contains a short title (an abbreviat-
ed caption for the list of figures in the frontmatter), a character style is
applied that hides the short title and its brackets.

arrays.jsx
Arrays are placed as inline tables. A paragraph, cell, and table style are
created by the script.

parbox.jsx

Paragraph boxes (\parbox) are placed as inline frames. The necessary
styles are created on the fly. Width and vertical alignment are taken from
the command’s parameters, if present.

margin-notes.jsx
Margin notes are placed as anchored floats in the margin. Object and
paragraph styles are created on the fly.

character-styles.jsx
Character formatting is handled by character styles. The following com-
mands are converted:

\emph
\underline
\textit
\textup
\textbf
\textmd
\textsc
\textsf
\textsl
\texttt

65

\texttt
\textsuper
\textsub

For all these a character style is created with the command’s name (with-
out the backslash). The only formatting applied is underline so that you
can see that some style was applied to some text. You’ll have to apply the
desired formatting after the conversion.

The commands \sc, \it, \bf, and \it are handled separately because
they can appear in two formats: {\it{a}} and {\it a}.

A problem is that InDesign can’t handle compound styles. That is, if you
apply first italic then bold, you end up not with bold–italic, but with bold.
So applying a character style to some text removes a character style that
had been applied to that text earlier. Apart from super–sub, super–super
(and all other variants of super- and subscript) in equations, compound
character styles are not yet supported by the script.

A special case is \text, which is simply removed because in Latex it’s
the equivalent of character style [None].

Finally, if the document contains any double-struck letters (\mathbb) a
character style is created (mathbb) and applied. You’ll need to set a font
in that character style if your base font doesn’t contain double-struck let-
ters.

symbols-accent-1.jsx
Accented characters can be entered in two different (though similar) for-
mats. The first is used outside math environments and uses convention-
al symbols for accents (“ for umlaut, u for breve, etc.).

Accented characters can be coded in several ways in the Latex file. I’ve
come across three; for instance, the ô can be entered as \^{o}, {\^o},
and \^o.

Latex is quite flexible in that when a character isn’t present in the active
font, it uses the base letter and the floating (‘combining’) accent. InDe-
sign isn’t that flexible: when a character isn’t present in the active font
InDesign shows a pink triangle, but that’s not so easy to detect in a
script. The only way to determine whether a certain character is includ-

66

ed in the active font is a brutal test, which is not used here. Instead, the
script enters a defined set of accented characters as such (characters
from the Unicode ranges Latin-1 Supplement, Latin Extended-A, and
Latin Extended-B), and for other combinations it places the base charac-
ter and a combining accent. How well that works is entirely dependent
on how well the combining accents were implemeted in the font. In my
experience most modern OpenType fonts perform well in this respect.

symbols-accent-2.jsx
The second format uses full accent names (grave, acute) and must be
used in math mode (not relevant in InDesign). Not all accents are avail-
able in this mode. The commands \imath and \jmath are replaced with
the dotless i and j.

There is a large degree of overlap between the two notations and it’s pos-
sible in principle to combine the two include files, but in order stay sane
I keep them separate.

symbols-greek.jsx
A fairly straightforward conversion of \alpha etc. to α etc. Allowance is
made for Greek letters with an argument (as in \delta{E}).

symbols-misc.jsx
A collection of symbols: digraphs (œ, æ), language-specific symbols (ł, å),
symbols (dagger, various types of dash), and some occasional ones such
as \og and \fg for the the guillemets (« and »).

Finally, hexadecimal codes are converted: \symbol{“014B} is replaced
with Unicode character 014B (ŋ).

All these are simple replacements, and it’s simple enough to add to the
list in the script. The script code is quite straightforward.

symbols-ipa.jsx
This is a good example to show how easy the converter can be extend-
ed. Phonetic (IPA) characters can be handled in Latex packages (the
included script uses the names from the TIPA package). To add sup-
port for other packages, write a separate script (or get it written) using

67

a format based on this include file and enter a call to the function in
latex-to-indesign.jsx.

symbols-math.jsx
An incomplete collection of math symbols. This function handles quite
a few but certainly not all. But it’s easy to add more symbols, the code
is pretty straightforward. The script handles simple math symbols and
those with an argument (e.g. \pm{12}).

math-log-like.jsx
Letters and strings of letters are italicised in equations. However, math-
ematical designators (sometimes called log-like expressions) should not
be italicised. The script applies strikethrough to these words so that they
can be ignored by the math processors; the strikethrough is removed
later. The words targeted here are arccos, arcsin, arctan, arg, cos,
sosh, cot, coth, csc, deg, det, dim, exp, gcd, hom, inf, ker, lg, lim,
liminf, limsup, ln, log, max, min, Pr, sec, sin, sinh, sup, tan, and
tanh. You can add more if needed.

math-misc.jsx
Some miscellaneous math replacements that somehow didn’t make it
into any of the other math modules. The commands \left and \right
are removed, they have no function for us in InDesign. Secondly, the
character style text is created, enabling strikethrough, and is applied to
all instances of \text{...}.

apply-math-character-style-to-missing-glyphs.jsx
The script applies the document’s Math character style to all missing
math glyphs in the UNicode ranges defined in the script.

math-processor-1.jsx
Some writers use math to apply italic outside math environments, for
instance, a as an alternative to \emph{a}. Here we create a character
style Italic and apply it to these fifth-column crypto math expressions.
We do this to make life easier for the math processor that runs next.

In addition, a number of other math and math-like things are handled.
For example, creative attempts at producing the degree symbol

68

(^{\circ}, ^\circ) are taken care of, some different types of dash
(en-dash versus the minus symbol), and \pmod{...} is changed to
(mod ...).

math-processor-2.jsx
The main math processor. The script creates these character styles:

italic
sub
super
subsub
supersub
supersuper
subsuper
sub italic
super italic
subsub italic
supersuper italic
subsuper italic
supersub italic

InDesign won’t allow compound character styles, which means among
other things that a subscript to a subscript needs a separate charac-
ter style. The script sets the point size and the vertical offset for each of
these styles, they can be adjusted later.

Various object, paragraph, cell, and table styles are created as well. They
are needed for fractions, for instance, which are created as small single-
column two-row tables. The cell styles used for these fractions set the
dividing rule’s appearance.

The script handles operator spacing, for which quart spacing is used
(U+2005 in InDesign). Stretchy braces and parentheses are handled as
well; the script uses the font STIXSizeTwoSym for these if it’s present.

math-sqrt.jsx
Square roots are handled in a second pass (for better or for worse; we’ll
see). As elsewhere, object, paragraph, and character styles are created for
these on the fly.

69

newtheorem.jsx
\newtheorem constructs are processed. Styles are created on the fly.

lists.jsx
\itemize and \enumerate environments are handled as expected. All
styles are created on the fly.

lists-description.jsx
\description constructs are processed. Styles are created on the fly.

footnotes.jsx
Footnotes are rendered as InDesign footnotes.

footnotemarks.jsx
Footnote marks and footnote text, too, (distinct from \footnote{}) are
rendered as footnotes.

heading-styles.jsx
The script creates paragraph styles for chapter, section, subsection, and
subsubsection paragraphs and applies them. The styles are skeletal, they
should be specified later.

index.jsx
Latex index markers are converted to InDesign topics and page refer-
ences. You’ll find them in the Index panel.

hyphenation-exceptions.jsx
The script looks for the file preamble.txt (in the active document’s
directory) and reads any hyphenation exceptions. The exceptions are
applied in the text, replacing the (exception) hyphens with U+00AD,
which is InDesign’s discretionary hyphen.

last-act.jsx
Indents: the script applies the paragraph style Body (no indent) to
paragraphs that contain the \noindent marker and Body paragraphs
that follow a non-Body paragraph (a heading, a display equation, etc.).

70

Independent post-processing scripts

020-number-captions.jsx
The script numbers figure and table captions, using InDesign’s automat-
ic paragraph numbering. For each type (tables, figures) a separate list is
created. If the document contains a chapter heading, the chapter num-
ber is used in thec captions (Section 3.1, Table 3.1, etc.).

021-caption-number-fix.jsx

An InDesign bug: on a page with two figures (or two tables) the number-
ing is the wrong way round (Figure 2.4 is followed by Figure 2.3 on the
same page). The script fixes this by setting the numbers at each caption.
The script needs to be rerun whenever figures and/or tables are added,
moved, or removed. This script is needed only when you think that there
can be two tables or two figures on the same page, but it does no harm
to run it anyway.

030-cross-references.j﻿sx
The script creates cross-references from Latex’s \ref{...} and \
label{...} commands and places them in anchored frames with
a light-red shade on the pasteboard. The shade is removed from the
frames of resolved references.

040-citations-and-bibliography.jsx
Using a Latex .bib file, the script resolves citations in the text and option-
ally generates a bibliography.

070-index-set-page-ranges.jsx
Latex uses a marker to indicate the end of a topic’s range, while InDe-
sign doesn’t: a topic range is set by counting paragraphs or pages (and
some other methods, which aren’t relevant here). The convertor marked
up the topics that range over some text, but cannot set the actual range
until the document is finished.

This script should therefore be run immediately before the index is gen-
erated. It sets the page range at topics as a page count. Each time the
document changes and the index is regenerated, the script should be run
again.

71

Latex2InD.jsx
If the converter was unable to create an equation, this script can be
used to run Latex in the background to create a PDF. See page 23 for
details.

72

73

Revision history

	 6.	 15 March 2025
	– Added a chapter on how to use Latex2Ind (pp. 23–28) and

added the script to the download.
	 5.	 9 Feb. 2025

	– Added a tip: the converter has no progress bar, but when you open
GREP tab of the Find/Change window you’ll see all the regular
expression flash by that are used by the converter. Makes a good
progress indicator because there are zillions of GREP searches and
replacements.

	– Added a section on InDesign pain points (p. 2).
	– Added a note on line endings (p. 9).
	– Added more elaborate paragraph numbering to section-heading

styles and added a section outlining the numbering system
(pp. 15–16).

	– Improved the presentation of various lists; see p. 42 for details.
	– Added support for the tabbing environment (p. 44).
	– Some more document cleaning added.
	– Bug fixes.

	 4.	 22 Jan. 2025
	– Added \pageref to cross-reference processing.
	– Added support for various types of box (mbox, makebox, framebox,

fbox).
	– Expanded table processing: added support for column spans;

included inline tables; improved the processing of column proper-
ties such as width and alignment. There is still some work to do on
tables.

	– The chapter on tables was substantially rewritten.
	 3.	 6 Jan. 2025

	– Bug fixes.
	– Added support for column-spanning figures (figures containing

more than one minipage environment).
	– Added a script to apply a Math character style to all math symbols

that can’t be displayed using the default font.

74

	 2.	 2 Jan. 2025
	– Bug fixes.
	– Added subscripts for log-like functions.
	– Sum, integral, and product are now sensitive to whether they are in

a display or an inline equation; this determines the position of the
arguments.

	– Added support for quotes and quotations.
	 1.	 27 Dec. 2024 – first drop.

